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Abstract

This paper describes a behavioural competency
level concerned with emergent scheduling of
spacecraft payload operations. The level is part of
a multi-level subsumption architecture model for
autonomous spacecraft, and functions as an action
selection system for processing spacecraft
commands that can be considered as "plans-as-
communication". Several versions of the selection
mechanism are described and their robustness is
qualitatively compared.
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Introduction

This paper describes an autonomous control
architecture for scheduling payload and user
service operations of a low Earth orbiting
microsatellite, AUSTRALIS-1. The control
architecture is based upon a behavioural paradigm
of artificial intelligence (see Maes, 1993).
Previous work has defined a layered competency
model for autonomous orbital spacecraft (Lindley,
1993a), and the detailed design of the level 1
competency for maintaining the spacecraft battery
condition (involving power system fault detection,
redundant unit switching, charge control, and
discharge control; Lindley, 1993b). Planning and
Scheduling of Data Acquisition and Transmission

is a much higher level competency (level 7),

representing very atypical functions for
behavioural systems (that have generally
addressed low-level robot motion control and
guidance functions). Emphasizing the interface
between the autonomous system and its human
users, the level 7 competency takes into account
specifically requested data objects, user requested
instrument parameters, and the need to downlink
particular data sets at particular times or locations.
These needs are catered for while considering the
battery charge requirements of Level 1. A plan in
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this system consists primarily of the current set of
requests for user operations, generated by users
and uplinked to the spacecraft. Hence "a plan" is a
communicable list of representations of goals. The
term "planning” can be used to refer to the
generation of goal lists, or can be used more
loosely to refer to the generation of activity that
satisfies a set of current goals. A schedule is taken
to be an association of specific activities with
particular times, and hence is a more detailed
form of planning in the loose sense. By these
definitions, planning and scheduling can be
emergent phenomena in that they do not need to
involve the generation of action representations. A
goal selection algorithm is described that achieves
emergent planning and scheduling by choosing a
particular represented goal as the basis of action
generation with each control cycle of the system.
Several versions of the algorithm are described,
and their relative merits are qualitatively
discussed.

Precedents for Autonomous Planning in Space
Systems

Command languages for spacecraft can be viewed
as languages for expressing plans that are
uploaded to and then obeyed by a spacecraft.
Increasing abstraction levels in spacecraft
command languages (Pidgeon et al, 1992), or
reducing command detail, requires greater
spacecraft "intelligence" in the form of the
autonomous planning ability needed to elaborate
the details of uplinked plans to the appropriate
level for the control of spacecraft hardware. For
example, in normal operations, the Hipparcos
spacecraft is controlled by processed commands
that are sent to the onboard computer for
distribution to other systems, and for possible time
tagging. The ERS-1 spacecraft, which is in a low
polar orbit with limited ground access, has a
similar command macro system, with four
command types providing different functions and
levels of authority. The EURECA system,
comprising fifteen separate payloads, uses an



onboard Master Schedule that contains a list of
time tagged command macros for execution by
the onboard data handling system. Further
increasing the abstraction level of commands, or
further decreasing their level of detail, involves
the incorporation of more sophisticated techniques
for autonomous planning and scheduling, drawn
from research in artificial intelligence (AI).

Representational Al systems, or Knowledge-
Based systems (Maes, 1993), use symbolic
models of the robot, its operating environment,
and the range of tasks and actions that the robot
"knows how to perform". System behaviours are
typically produced by an inference engine that
reasons about the models to produce action plans.
Plans and action representations are frequently
hierarchically ordered, with high level
representations of goals and actions at the top of
the hierarchy. Subsequent levels of abstraction
decompose goals into increasingly specific
subgoals, ending with primitive machine
commands that can be executed directly by
hardware. Robotic plans are monitored during
execution. A robot may attempt to deal with plan
failures by replanning from some suitable level of
abstraction, with various techniques being
employed to deal with constraints of real-time
operation. Brooks (1986) has described this
traditional, representational approach as the
sense/model/plan/act approach. Representational
approaches (reviewed in Georgeff, 1987) have
made substantial progress in addressing the
requirements of many applications, but frequently
founder in the inability of system designers to
provide sufficient knowledge for the autonomous
performance of useful tasks in real environments.

Most space applications of Al to date have
concentrated upon the areas of mission planning,
sequencing, and control. There have been
numerous projects that have addressed the
automation of ground-based planning and control
of space systems, with many systems successfully
prototyped, and a number now in routine
operational use (Drabble,1991). These ground-
based systems have been developed within the
traditional, representational AI paradigm.
Autonomous orbital spacecraft, surface
exploration robots, and dextrous free-flying robots
have particular requirements for producing
appropriate behaviour quickly in the face of
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dynamic and uncertain circumstances. These
issues have been addressed using techniques
representing a convergence towards some of the
techniques involved in behavioural artificial
intelligence. Fast response times have been
achieved by separating the control architecture
into parallel functions, with a combination of
deliberative planning and reactive planning being
used to achieve goals at strategic and tactical
levels, respectively (eg. Rokey and Grenander,
1990, and Erickson et al, 1989). Autonomous
orbital spacecraft control models have adopted
limited parallel and distributed processing models,
but have still tended to rely upon world modelling
as the basis of their intelligence (eg. Raslavicius et
al, 1989).

Hierarchical approaches to action representation
and control have dominated the field of spacecraft
automation, and have been incorporated as
fundamental structuring principles in proposed
reference models for space automation and
robotics developed both by NASA and ESA
(Elfving and Kirchoff, 1991). The "Theory of
Intelligent Machines" proposed by Valavanis and
Saridis (1992) associates hierarchy with proposed
fundamental analytical measures of intelligence,
and the Rensselaer Polytechnic Institute Center
for Intelligent Robotic Systems for Space
Exploration has constructed a testbed that has the
development and implementation of this theory as
one of its primary purposes (Watson et al, 1992).

Behavioural theories of artificial intelligence
suggest a very different approach to autonomous
action generation and control, requiring new
reference models for robotic systems (Lindley,
1993a) and new analytical formulations that do
not intrinsically depend upon a hierarchy of
functional or control flow (Lindley, 1993c). Maes
(1993) has described the following characteristics
of behavioural systems:

- systems have multiple, integrated, and
typically low-level competences

- the system is "open" or "situated" in its
environment, having many interactive
interfaces with a complex, dynamic, and
unpredictable world

- the emphasis is upon autonomy

- systems are designed to produce behaviour,
rather than to have knowledge in a



representational sense, thus avoiding the
circumspection problem of providing
sufficiently comprehensive world models for
the tasks at hand

- particular functions may emerge from the
activity of more primitive behaviours

- there is a strong emphasis upon adaptation

Lindley (1994) has argued that behavioural
approaches are justified by philosophical positions
that regard represented knowledge as a cultural,
discursive, and pragmatic artefact, rather than
being the substance of intelligence; in effect,
knowledge is reified practice, codified by
representation in order to coordinate behaviour.
From this viewpoint, action, rather than
representation, is at the core of intelligence.
Behavioural theories constitute a new and
vigorous paradigm that has shown superior
performance to representational methods in the
control of simple robotic functions (Brooks,
1991).

Planning and Behavioural Action Selection

Agre and Chapman (1990) attribute problems with
the representation-centred view of "plans-as-
programs" to a mistaken notion of what activity is
like, and the role plans can play in activity. The
plan-as-program view regards activity as a matter
of problem-solving and control. The world
presents an agent with a series of formally defined
problems that require solutions, and a planner
produces the solutions. The executive then
"implements these solutions by trying to make the
world conform to them". Agre and Chapman hold
that this view is incorrect, since "Acting in the
world is an ongoing process conducted in an
evolving web of opportunities to engage in
various activities and contingencies that arise in
the course of doing so". Hence an agent can be
viewed as participating in the flow of events,
rather than solving problems.

This view leads to the notion of plans-as-
communication as part of a general theory of
situated activity. Plans-as-communication have a
reduced role, with the need for improvisation on
the part of the user. A plan is used as a resource
among other resources in a process in which an
agent engaged in rational, goal-directed activity
continually reevaluates what to do. Plan use is a
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matter of figuring out how to make a plan relevant
to a situation at hand. The meaning of the plan is
heavily dependent upon the context, and must be
constantly reassessed. Plans-as-communication
have a fuzzy boundary with other forms of
communication, such as lists, schedules, images,
and mnemonics. The current context of an agent is
a resource that can be used to intepret the plan.
Agre and Chapman present the example of a
person following a plan which has the form of
another person's instructions for how to reach a
particular location. Lessons generalised from the
example are:

- the list of shared understandings is
innumerably long

- all plans depend on shared understandings in
this way

- action in the real world is sufficiently
difficult to suggest that plans must depend on
innumerable shared understandings in order
to be expressible

- these points apply regardless of whether the
plan's maker and user are the same agent or
different agents

Attempts to capture the meaning of plans by
representation must therefore encounter the
circumspection problem of needing to represent
an unspecifiable amount of contextual knowledge.
Agre and Chapman suggest that the plans-as-
communications view is more plausible than
plans-as-programs as an account of human plan
creation and use, and may provide a more
effective model for artificial autonomous agents,
although its tendency to appear like the general
problem of automated natural language
comprehension makes it impractical for the design
of autonomous agents in the short to medium
term. However, this is overly pessimistic, since
the ability to understand (ie. use) limited forms of
plans for particular purposes in a specific domain
can be a much simpler competency than the
general-purpose natural language skills of human
beings.

An agent capable of processing plans-as-
communication can be designed using a
behavioural goal selection system for action
generation without deliberative reasoning. Maes
(1990) suggests that the action selection
mechanism of an autonomous agent in a complex
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dynamic environment should be reactive and fast,
favouring actions relevant to the current situation,
exploiting opportunities, and adapting_to
unpredictable and changing situations. The
mechanism must favour actions that contribute to
any current ongoing goal or plan, and should look
ahead, especially to avoid hazardous situations
and to handle interacting and conflicting goals.
The action selection mechanism must also be
capable of operating with minimal, incomplete or
incorrect world knowledge, with limited
computational and time resources, and be robust
(degrading gracefully when components fail).

A goal selection mechanism proposed by Maes
(1990), that appears to have these desirable
characteristics, views an autonomous agent as a
set of modules each having its own specific
competence. These modules resemble the
operators of a classical deliberative planner. A
competence module has a list of preconditions to
be fulfilled before the module can become active,
lists of expected effects of the module's action in
terms of an add list and a delete list, and a level of
activation for the module. If all the preconditions
of a module are true at a particular time, then the
module is executable at that time. Competence
modules are linked to form a semantic network,
with activating and inhibiting links between
modules allowing the activation energy to
accumulate in the modules that represent the
"best" actions to take in the current situation and
given the current set of goals. The pattern of
spreading activation among modules, and the
input of new activation energy into the network,
are determined by the current situation and the
current global goals of the agent. Activation
iterates through cycles, thereby accumulating until
a threshold is exceeded and an action is
performed. A decay function ensures that the
overall activation level remains constant through
continuous iterations.

Initial results with this approach are reported to be
very encouraging, with networks exhibiting
planning behaviour. Plans are not explicitly
represented, but the "intention" of an agent to
carry out certain actions is expressed by high
activation levels of the corresponding modules.
Action selection is non-hierarchical and highly
distributed. Global parameters serve as controls
for mediating smoothly between different action
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selection characteristics, and therefore between
adaptivity, speed, and reactivity on the one hand
and "thoughtfulness" and certainty on the other.
The approach is computationally much less
expensive that search-based planning. Different
paths are evaluated in parallel, and the system
does not start from scratch when a particular path
fails to produce a solution, nor "replan” at each
timestep. The action selection mechanism is
capable of processing complex goal
interrelationships, and complex, possibly
hierarchically organised goal substructures,
although particular applications may have very
simple, flat goal representations with few
interconnections.

AUSTRALIS-1 Spacecraft Operations

The AUSTRALIS-1 spacecraft is currently being
designed by an informal consortium of Australian
universities. The baseline spacecraft is a 35 cm
cube, having an expected mass of less than fifty
kilograms. It is intended to operate within an
altitude range from five hundred to one thousand
kilometres. The spacecraft will carry a near infra-
red CCD-based camera system, and
telecommunications equipment to support a data
store-and-forward communications service.
AUSTRALIS-1 has particular requirements for
autonomy derived from the need to serve a large
number of users over a highly dispersed area,
using very cheap and simple ground equipment
with minimal centralised control or coordination.

The spacecraft subsystems most directly
associated with supporting the level 7 user
operational model are shown on Figure 1. The
controller initiates image acquisition operations
and controls downlinking of images and data units
via the CMS (Command Management System)
database. Hence, the level 7 control network
functions at what will here be called a transaction
level; that is, it is not concerned with detailed data
transfer and timing control between devices, but
with control of the transfer of complete data units.

The flow of user data between components does
not pass through the level 7 controller, although
operation selection and initiation is controlled by
this level. The level 7 controller receives inputs
from the relevant subsystem components, from
the guidance and navigation system, and from the



level 1 competency concerned with battery
conditioning, charge control, discharge control,
and power control. The AUSTRALIS-1 power
control system is described in detail in Lindley
(1993b).

AUSTRALIS-1 users will be able to uplink data
files (by Store Data command), request data
broadcast (by Broadcast Data command), request
image acquisition (by Acquire Image command),
and request data deletion (by Delete Data
command). The commands are stored on board
the spacecraft, and function as goals within the
payload planning and scheduling competency of
the autonomous control system. In the data store
and forward mode, ground stations can uplink a
request for the spacecraft to broadcast data
immediately, or broadcast to a distant ground
station specified in terms of a latitude and
longitude or a time. During image acquisition
operations, the spacecraft receives an image
acquisition request from a user, schedules and
acquires the image, and then treats the image data
in the same way that user data packets are treated.

D

camera
system

protocols and data exchange between devices,
allowing the level 7 control competency to be
defined at a supervisory control level. The CMS
database contains user data packets in addition to
user commands, and maintains a file listing all
data packets and their parameters or header
information. This directory file is treated as a data
packet with an identifier of 0. It can be
downlinked (with filtering based upon user
priority), but cannot be deleted. The directory is
updated automatically by the CMS dbms.

A Store Data command has an associated data
packet. Upon receipt of a Store Data command,
the data packet is stored in a database within the
CMS, along with command parameters. A data
identifier and descriptor are entered into the
directory file within the CMS database. Store Data
commands are processed immediately if accepted
(ie. within one processing cycle of the control
system) to initiate data input to the CMS database
from the receiver (channel) for eligible
commands. Detailed timing of data storage
transactions is not modelled at this level. If the
level 7 control
cycle time is fast
enough, a Store
Data command
can be validated
prior to

uplink s 1
command RX command X uplinking any of
Jdata 1. user service management data downlink 1 the associated
channel system channel downlink data to the

data  spacecraft. If the

Figure 1. Level 7 subsystems.

Stored data is held in an onboard database within
the Command Management System (CMS) for
downlinking to specified destinations. Stored data
can be deleted upon explicit user request. In all of
these transactions the spacecraft will schedule and
execute operations without coordination or
mediation by a central ground station or command
and control network. That is, user stations will
interact directly with the spacecraft.

The Command Management System (CMS)
consists of a command execution controller, a
database management system (dbms), and a
database residing in bank switched memory. The
CMS command execution controller and other
levels of the control system handle detailed
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cycle time is too
slow for this,
uplinked data can be buffered prior to transfer to
the CMS database if the command is accepted, or
deleted if the command is rejected.

Upon receipt, a Broadcast Data command is
stored in the database within the CMS. As
specified by the command parameters,
broadcasting can be initiated immediately, at a
specified time, or in the proximity of a particular
target point specified by latitude and longitude.
The Broadcast Data command includes
parameters specifying the data to be broadcast.

A Delete Data command includes parameters
specifying the data to be deleted from the CMS
database. Deletion will occur only if the command



carries appropriate authorisation. When data is
deleted, the associated data identifier and
descriptor are removed from the directory file
within the CMS database.

Upon receipt, an Acquire Image command is
stored in the CMS database. The command
includes all appropriate image acquisition
parameters. Execution of an Acquire Image
command is triggered when time or positional
parameters are satisfied, and subject to resource
availability. Once an image has been acquired, it
is stored as a data unit in the CMS database, along
with its parameters and acquisition details. An
image identifier and a descriptor are entered into
the directory file within the CMS database.

Level 7 Subsystem Interface Definition

Subsystem Sensors

Each subsystem or component has a range of data
outputs, which may include sensor values and
computed function values. These outputs are
treated as sensors monitored by the level 7
controller. Sensors classified by associated
component are as follows:

Command Management System (CMS):

CA command arrival, 1/0
CREC command record

BD broadcasting data via tx, 1/0
SD storing data from rx, 1/0
CMA active memory blocks

CM total memory blocks

Guidahce and Navigation System (GNS):

SClat spacecraft latitude
SClong  spacecraft longitude
SCalt spacecraft altitude
SCtime  spacecraft system time

CREC records are derived (within the CMS) from
information provided by the user. Information
associated with all commands upon initial receipt
includes: command identifier (CID), user priority
(UPRI), command priority (CPRI), and command
type (CMD).
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Further information within Acquire Image CREC
input includes the target latitude and longitude or
an image acquisition time, and the image data
size. Store Data CREC inputs include the data size
and the data itself. Broadcast Data CREC inputs
include a data identifier, data size, and the
downlink latitude and longitude or a downlink
time. A data identifier of 0 indicates the CMS
database directory file. Delete Data CREC inputs
include a data identifier, and a delete latitude and
longitude or a delete time. The level 7 CMS
database user data storage format for each data
file includes the data identifier, the identifier of
the user who supplied the data, the data priority,
the data size, and the stored data. A datablock
generally includes command parameters from the
initial Store Data or Acquire Image command
associated with the data record.

Actuators

Control signals (including combined control and
data output signals) are:

Command Management System (CMS):
Command id, CID integer

Control enable, CE 1/0
Command Arrival Acknowledge, CAAK 1/0

Active Memory Blocks, AMB 2 bytes
Operation, CMS_OP 2 bits:
delete data 00
acquire image 01
store data 10
broadcast data 11

Transmitter:
tx_baud 2 bits

(encoding 0, 1200, 4800, or 9600 bps)
Controller Design
The overall goal of the level 7 competency jis to

maximise the provision of user _services
throughout the lifetime of the spacecraft. Hence

the goal is to maximise the overall throughput of

data in response to user demand. Users and their
data requests are prioritised, and higher priority
throughput is more important than lower priority
throughput. Hence, the goal of this level can be
expressed as the maximisation of the value

function:




k

Q = Xiy 8i.Pu.Pi/Plny (1)

where k is the number of data packets downlinked
over the lifetime of the spacecraft, S; is the size of
the ith data packet downlinked during that time,
P,; is the priority of the user who requested data
packet i, P; is the priority requested by the user for
data packet i, and Ppx is the maximum possible
user and data priority. Pmax is an a priori constant
established by convention. S;, Py;, and P; appear to
the controller as stochastic variables within
respective predefined range limits. The controller
has some control over the product S; . Py; . P; for
the command i executed on any given occasion if
there are a number of candidate commands from
which to choose that have different values of S; .
Py . P;. Then, other things being equal, the
controller can maximise the value function by
choosing to process the command with the
maximum product S; . Py . Pi. It is the goal
selection system of the level 7 competency that
has the role of maximising Equation (1). Inputs to
the goal selection system include command goals
representing demands for power and state
variables indicating the power available after
battery charging (from level 1 of the control
system, concerned with power control). The
amount of power available constrains the data
throughput rate, and also constrains command

execution by command type.!

There are many ways of defining and
implementing a goal selection algorithm,
manifesting varying features and degrees of a
behavioural approach. Several alternative goal
selection systems are described here, compared,
and evaluated qualitatively in terms of that aspect
of their robustness that concerns the tendency of
the system to return to proper functioning
following disruption due to loss of hardware
and/or control logic.

1More generally, there is a tradeoff between the throughput
and the overall lifespan of the spacecraft. This complicates
the optimisation problem, but the complication is avoided
here by designing the spacecraft to operate with an average
power consumption over a fixed design lifetime of four
years.
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Design #1: A Procedural Algorid

The algorithm for a single cycle of goal selection
can be written as a conventional procedural
algorithm:

1. select eligible commands from the general
command list, according to:
- satisfaction of latitude, longitude, and time
constraints
- Store Data commands are not eligible if a
command is currently being stored (ie. SD is
asserted)
- Broadcast Data commands are not eligible if a
command is currently being broadcast (ie.
BD is asserted)

2. set best goal = NIL

3. set power available = array energy remaining -
battery charge energy needed (from Level 1)

4. for each eligible command goal i
if the command is a Delete Data command
then
- execute the command
- remove the command goal from the
controller goal list
else
calculate Q; = UPRI. CPRI. Sd
if the command is a Srore Data command
then
if memory required < memory
available ( that is, Sd < (CM - CMA))
then
Cost; = receiver power
+ memory power
else
Cost; = greater than max
power
end if
else if the command is an Acquire Image
command then
if memory required < memory
available then
Cost; = camera power
+ memory power
else
Cost; = greater than max
power
end if



else if the command is a Broadcast Data
command then
for each selectable transmission bit
rate j
Cost;; = transmission power for
rate j
end for
end if
if Qi > Qvest goal then
if command i is a Broadcast Data
command then
set jmax = max j for which
Cost;; < power available
if jmax 1S Dot zero then
set tx_baud = bit rate jmax

set Cost; = Costjj .\
else
Cost; = greater than max
power
end if

end if
if Cost; < power available then
set best goal = goal i
end if
end if
end for
5. execute best goal

This system differs from the goal arbitration and
selection network described by Maes (1990) in
that, unlike Maes' system, command goals do not
have any represented dependencies, substructures
of subgoals, or interrelationships; they are treated
as independent requests for system resources.
Also, the goal list used here is a dynamic structure
that may vary in size from O to the maximum
number of goals that the system memory can hold.
The value, Q;, of each goal i is similar to the
activation level used by Meas.

The content of goals (within certain standard
formats) and the frequency of goal arrivals are
determined by the dynamics of. the system
environment. The goals have a critical role in
determining the value of the autonomous system,
since the ultimate purpose of the spacecraft is to
satisfy its users on the ground by satisfying their
requests communicated to the spacecraft in the
form of the goals. However, the goals are partial
in the sense that maximising the usefulness of the
system over its projected lifetime requires
balancing user-generated goals with other goals
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concerning the health and status of spacecraft
subsystems and components. The overall goal
structure of the spacecraft control system is
partially defined by the levels of the multi-level
competency model (see Lindley, 1993a), partially
emergent (overall performance is maximised by
many competencies acting together but achieving
numerous local subgoals), and partially explicit in
the form of the command goal list.

Advantages of this procedural algorithm include
overall simplicity and computational complexity
that is linear in the number of eligible goals. The
primary disadvantage is that the procedure has no
intrinsic robustness against failure, because it is
written according to a model in which a single
active process interprets a variable-length list of
passive goals.

The goal selection system is a behavioural
approach to goal selection in that it achieves
planning and scheduling without world modelling.
However, the system can in principle be
implemented as a declarative knowledge base,
representing a less paradigmatic example of a
"behavioural system". The knowledge base can be
arbitrarily complex, since there is no limit to the
amount of knowledge about the spacecraft and its
world that can in principle be modelled. The
simplest usable solution is to code the procedural
knowledge expressed in the procedural algorithm
using a declarative representation language. This
will ensure that no knowledge is represented that
is not immediately relevant to the solution to the
arbitration problem, and avoids the circuspection
problem by implementing a behavioural goal
selection mechanism that does not depend upon
processing a world model. However, such a
"knowledge-based" solution is at least as complex
as the procedural solution, and will result in little
generality - it is very unlikely that any of the
knowledge will be reusable for any other purpose.

A declarative solution suffers from the robustness
problem of the procedural solution if it depends
upon a single inference process. Inference has the
further disadvantage of realising the procedural
algorithm in an inefficient and "unnatural” way as
a search pattern over the declarative model of the
algorithm. This inefficiency is avoided by



preunifying or compiling the declarative model
into a "flat” rule base that can be executed without
search, but at the expense of memory. The
declarative solution can then be used to address
some aspects of the robustness needed of the
control system. In particular, in mapping the
controller design onto available physical
processors, the natural modularity of the
declarative controller definition can be used to
adaptively remap control functions across
physical processors according to possible
competing demands for processors or variable
processor availability due to failures or power
limitations (Lindley, 1994).

This method can result in a graceful degradation
of temporal efficiency in controller execution with
decreasing total processing power, and allows the
executing controller to be completely rebuilt, if
necessary, at any execution cycle (with the loss of
some dynamic state information). In general,
critically diminishing processor power can be
managed systematically by eliminating control
functions from the "top down" in a layered control
system such as the subsumption architecture, thus
eliminating competencies in decreasing order of
criticality.

Deficiencies of this approach include the need to
maintain a robust and reliable copy of the
declarative definition of the control system, and
the need for a robust and reliable monitoring and
remapping process. The proposed solution is
therefore not a general one, since the problems of
robustness and reliability are shifted onto those
features of the system designed to address the
reliability and robustness of the executing
controller.

For the proposed strategy to avoid endless
regression, it is necessary to reach a point of
control design that is intrinsically robust and
reliable. If intrinsic techniques for achieving
robustness and reliability can be defined,
parsimony suggests that those techniques should
be built into the initial model of the autonomous
control system, rather than any level of meta-
interpreter. It is the search for intrinsic reliability
and robustness that leads to behavioural
implentation strategies. As suggested by Lindley
(1994), a behavioural control model can be
specified declaratively, and formal properties of
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the syntax can aid design integrity and support
verification. However, the use of declarative
specifications is neutral in regard to other general
characteristics of a design, and adds little to the
search for principles of intrinsic robustness.

Desien #3: A Sul o1

Taking the basic sequence of operations defined
in the procedural algorithm as a sequence of
behavioural components, and allowing the
messages passed between behavioural
components to include lists of complex data items,
the procedure can be represented as a behaviour
network in the graphical notation used to describe
layers of the subsumption architecture, as shown
in Figure 2.

In this Figure, list-valued messages are
represented by bold arrows. Each box represents a
transformation of the data content of the messages
passed by input arrows into the box to the data
content of messages passed by output arrows. The
function and result of the algorithm expressed in
this form are the same as in the procedural
algorithm. The only substantial change from the
procedural algorithm is that instead of iteratively
applying the sequence of operations to each
command in turn and testing for the best
command so far on each iteration, a single
sequence of operations is used with each
intermediate step in the sequence receiving a list
of commands as its input, performing an operation
on the list, and producing a new list (and/or single
command) as its output. The network is activated
once per control cycle, where the inputs
(represented by elliptical sensor signal sources)
are fixed (sampled) at the start of each cycle and
the cycle time is long enough for the outputs
(represented by elliptical actuator signal sinks) to
stabilise by the end of each cycle.

Advantages of this version of the emergent
planning and scheduling competency include
those of the procedural algorithm, that is,
simplicity and computational complexity that is
linear in the number of commands. Additional
advantages that might follow from
implementation as a single level of a subsumption
architecture using the mechanisms described by
Brooks (1986), but excluding the general
advantages of behavioural systems, include:



- each block in Figure 2 can be implemented as
an augmented finite state machine (AFSM),
minimising the complexity of its
implementation

- blocks intercommunicate asynchronously,
thereby simplifying their interfaces

- each block can be implemented as a separate
physical process, thereby improving the
robustness of the network against processor
failure

The primary disadvantage of this model is that

1o
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this deficiency, but only at the cost of the
regression of the robustness requirement
(beginning with the remapping process), as in the
case of knowledge-based inference processes. The
basic subsumption mechanisms as described do
not provide intrinsic robustness and fault-

tolerance.

Desien #4: Disiributed T

A major characteristic contributing to the
robustness of a system is that incremental physical
element failures merely degrade overall
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Figure 2. A subsumption level.

each block is critical to the correct operation of
the overall competency, so the failure of a block
(or its physical processor) will result in the failure
of the competency. Remapping functional
components (ie. blocks) to processors can redress

performance. A first step towards this
characteristic is to distribute data structures across
multiple hardware components. The list-
processing functions of the subsumption layer
shown on Figure 2 accept lists as input messages
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and/or generate lists as output messages. A more
robust approach would be to carry out the
sequence of operations using a separate data
structure to represent each command. The
transformations carried out by the operations can
be represented as a sequence of transformations of
the state of each command structure, until the
final selection of a command for execution. This
approach is modelled on Figure 3.

Posting new goals is assumed to be asynchronous,
although only goals that are present at the
beginning of a control cycle are processed within

QClong enable
Calt } eligible
(SD ) commands
(BD )

delete execute delete
datacmd | data commands

y r‘CMS_OP ’
done
execute delete

data command calculate

CID command values

CMA calculate em. ©
available memo vail. X
Com)— 24 L aloulae

command costs

calculate power'

global memory area that is dynamically mapped
onto multiple, modular -hardware memory
elements by the post_new_command_goal
component. The wide arrows on Figure 3 indicate
multiple independent data paths, and the double-
headed paths indicate bidirectional transfer.
Actual data transfer for each operation may be
parallel or sequential. In the case of parallel
transfer, each functional block acts as an SIMD
(Single Instruction Multiple Data) processor,
speeding up execution of the function. If data
transfer is sequential, each block functions
iteratively like the blocks of the subsumption

available power {avai]. done
level 7 v
............... i;'v.e.i.l'"" select and &.
Ear charge_needed for execution
----------------------------- : . Selectai .
cmd -r CMS_OP
execute

command _-[:

Figure 3. Controller with distributed data.

that cycle. The procedural sequence is then
implemented beginning with the enable eligible
commands function, with each subsequent
function being initiated by the "done" message
from the function preceding it in the sequence.
The command goals themselves are held in a

layer described in Design #3, but iterating through
transformations of shared data structures, rather
than processing separate lists.

Each command data structure can be mapped onto
a single physical memory unit (or n command
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structures can be flexibly mapped onto m physical
memory units), so that failures of physical
memory units result in a degradation of
processing or storage capacity, but do not result in
complete loss of functionality. The loss of
memory units must be detected by the
post_new_command_goal component, and that
component then assigns new goals to the
remaining memory elements. The only loss
incurred by the failure of a working memory
component is the current set of goals stored by
that component. This distributed data solution has
superior robustness to the preceding design
solutions, but still has no intrinsic robustness
against failures of transformational modules.

ign #3: Distribu istri
Functionality

post new

command goal

evaluation functions to be embedded in an
iterative algorithm. A simpler solution is to
combine the functions into a monolithic goal
arbitration module, as shown on Figure 4. Goals
can be presented to the network in parallel. While
the number of any given goals at any particular
time is variable, that number is always in a range
from zero to a fixed upper bound (as limited by
storage space). The network can be designed for
the maximum possible number of goals, with
unused inputs assigned to null values and their
associated goals having zero probability of
selection.

This design will allow distributed data storage and
distributed functionality, supporting robustness
against hardware loss in both cases by the
association of particular data structures and
particular connectionist nodes (or sets thereof)

->(CMs_OP)

L>( CE )
()
~(E)
> (o)

arbitrator

T

Ear charge_needed

level 1

Figure 4. Distrbuted data with & monolithc arbimtor

One method of achieving distribution of
functionality is by implementing each functional
module of the emergent scheduling algorithm as a
connectionist network. That is, the transfer
function implemented by the module can be
implemented as a multi-layer network having an
input layer for the inputs to the module, at leas
one hidden layer, and an output layer. Robustness
is achieved because such networks are, in
principle, highly tolerant of the loss of
intermediate layer nodes. Iterative applications of
the basic operations would require connectionist
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“This form of solution may be_the most robust

with different physical units. Hardware
component failure will degrade performance, but
will not immediately halt functionality unless a
critical number of components are incapacitated.
The detailed degradation characteristics for the
oal selection task are currently unknown.

considered here. The primary disadvantage of this
approach is the need to create the weighted
network of the arbitrator. A learning network
could use a database of examples to learn from, if




available, or could learn in real time if a suitable
reinforcement signal can be defined. The
feasibility of this approach is a subject of ongoing
research. A more desirable solution would be to
derive a robust definition of the network from a
formal specification of the transfer function that it
is to implement.

Desien #6: Distributed Obiccts/A

The final design option considered here is that of
integrating data and functionality into discrete
computational "objects", each of which represents
a particular goal, and each of which can be
allocated to a dedicated physical computational
component. "Posting” a goal is then a matter of
instantiating a goal object, based upon a common
class or subclass (according to command type)
definition but with particular characteristics
defined by data unique to that command instance.
Each goal has functionality for calculating its own
activation level, based upon sensor inputs, state
variables from other competency levels, and its
own data values. Sensor inputs and state variables
define a virtual environment within which goals
compete for execution. The final selection is
based upon the overall activation value of each
separate goal, and so is a very simple mechanism
that can be made robust by redundancy. If a
hardware component is lost, the goals that depend
upon that component will be lost; all other goals
within the system will persist, with their own state
and functionality intact.

A serious disadvantage of this approach is the
need to robustly maintain a prototypical object or
class definition, and a robust instantiation
mechanism. This results in a similar regression of
the robustness requirement to that seen in the case
of a declarative solution (Design #2 above). A
strategy for reducing this regressed requirement
might be to reduce object functions to a more
primitive set of operations, with overall goal
selection occurring as an emergent phenomenon
‘of the primitive interactions of goal objects. This
is an area of ongoing investigation.

There are many ways in which a fully distributed
system might be defined, based upon an object
analogy, or upon analogies of processes or agents.
Each analogy emphasises different aspects of the
behaviour and interaction of goals within the
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system. Clarifying the variety and respective
merits of distributed approaches are important
themes of ongoing research.

Conclusion

This paper has described an approach to the
autonomous on-board scheduling of spacecraft
payload operations, based upon behavioural action
selection and upon processing plans as
communications. Several variations of the action
selection mechanism have been described and
evaluated comparatively in terms of robustness
against hardware component loss. It has been seen
that increasing the distribution of data and
functionality can provide greater robustness,
validating behavioural approaches to artificial
intelligence that seek greater overall functionality
and robustness via low level distributed functions
that do not rely upon high level representation
models. Designs that minimise representation and
distribute both data and functionality have the
greatest potential robustness, and manifest the
most distinctive features of behavioural systems.

The spacecraft model and control designs
described in this paper are simplified in a number
of ways. Detailed protocols for modelling
possibly sequential input of formatted sensor
values are not considered. The applicability of on-
board image compression has not been considered
in detail, although compression could yield
substantial benefits in increasing virtual storage
capacity and data throughput. It is assumed that
FDIR functions are carried out within the level 5
competency (Acquire, Condition, and Downlink
Instrument Data); without a detailed model of that
level, the integration of operational planning and
scheduling with FDIR functions is not clearly
defined. This paper has not considered
downlinking the contents of the command
database to users, acknowledgement of command
execution, or elimination of commands that
cannot be executed. Finally, the quantisation of
input and output variables is not considered, either
in the definition of those variables or in the
definition of functions that accept or define them,
respectively. These simplifications are used to
clarify the central issues in developing a
behavioural control system for the autonomous
scheduling and planning of user services, and do



not invalidate the overall analysis or conclusions
obtained.

Current work is addressing the validation of the
goal selection mechanisms in a spacecraft
simulator, and the development of a more rigorous
and quantitative characterisation of the merit of
the different goal selection systems, accounting
for their overall complexity in addition to their
robustness. Ongoing research is extending this
work to determine how greater levels of autonomy
and robustness can be achieved by incorporating
methods for learning, adaptation, and self-
organisation into behavioural systems.
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